\(\int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx\) [271]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 139 \[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{2 b c \sqrt {-1+c x}}-\frac {\sqrt {1-c x} \log (a+b \text {arccosh}(c x))}{2 b c \sqrt {-1+c x}}-\frac {\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{2 b c \sqrt {-1+c x}} \]

[Out]

1/2*Chi(2*(a+b*arccosh(c*x))/b)*cosh(2*a/b)*(-c*x+1)^(1/2)/b/c/(c*x-1)^(1/2)-1/2*ln(a+b*arccosh(c*x))*(-c*x+1)
^(1/2)/b/c/(c*x-1)^(1/2)-1/2*Shi(2*(a+b*arccosh(c*x))/b)*sinh(2*a/b)*(-c*x+1)^(1/2)/b/c/(c*x-1)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {5906, 3393, 3384, 3379, 3382} \[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{2 b c \sqrt {c x-1}}-\frac {\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{2 b c \sqrt {c x-1}}-\frac {\sqrt {1-c x} \log (a+b \text {arccosh}(c x))}{2 b c \sqrt {c x-1}} \]

[In]

Int[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[1 - c*x]*Cosh[(2*a)/b]*CoshIntegral[(2*(a + b*ArcCosh[c*x]))/b])/(2*b*c*Sqrt[-1 + c*x]) - (Sqrt[1 - c*x]
*Log[a + b*ArcCosh[c*x]])/(2*b*c*Sqrt[-1 + c*x]) - (Sqrt[1 - c*x]*Sinh[(2*a)/b]*SinhIntegral[(2*(a + b*ArcCosh
[c*x]))/b])/(2*b*c*Sqrt[-1 + c*x])

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5906

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c))*Simp[(d
 + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Subst[Int[x^n*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]],
 x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {1-c x} \text {Subst}\left (\int \frac {\sinh ^2\left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b c \sqrt {-1+c x}} \\ & = -\frac {\sqrt {1-c x} \text {Subst}\left (\int \left (\frac {1}{2 x}-\frac {\cosh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{2 x}\right ) \, dx,x,a+b \text {arccosh}(c x)\right )}{b c \sqrt {-1+c x}} \\ & = -\frac {\sqrt {1-c x} \log (a+b \text {arccosh}(c x))}{2 b c \sqrt {-1+c x}}+\frac {\sqrt {1-c x} \text {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{2 b c \sqrt {-1+c x}} \\ & = -\frac {\sqrt {1-c x} \log (a+b \text {arccosh}(c x))}{2 b c \sqrt {-1+c x}}+\frac {\left (\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{2 b c \sqrt {-1+c x}}-\frac {\left (\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{2 b c \sqrt {-1+c x}} \\ & = \frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{2 b c \sqrt {-1+c x}}-\frac {\sqrt {1-c x} \log (a+b \text {arccosh}(c x))}{2 b c \sqrt {-1+c x}}-\frac {\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{2 b c \sqrt {-1+c x}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 0.31 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.76 \[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\frac {\sqrt {-((-1+c x) (1+c x))} \left (\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\text {arccosh}(c x)\right )\right )-\log (a+b \text {arccosh}(c x))-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arccosh}(c x)\right )\right )\right )}{2 b c \sqrt {\frac {-1+c x}{1+c x}} (1+c x)} \]

[In]

Integrate[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[-((-1 + c*x)*(1 + c*x))]*(Cosh[(2*a)/b]*CoshIntegral[2*(a/b + ArcCosh[c*x])] - Log[a + b*ArcCosh[c*x]] -
 Sinh[(2*a)/b]*SinhIntegral[2*(a/b + ArcCosh[c*x])]))/(2*b*c*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))

Maple [A] (verified)

Time = 0.66 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.19

method result size
default \(\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (2 \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (a +b \,\operatorname {arccosh}\left (c x \right )\right )+2 \ln \left (a +b \,\operatorname {arccosh}\left (c x \right )\right ) c x +\operatorname {Ei}_{1}\left (2 \,\operatorname {arccosh}\left (c x \right )+\frac {2 a}{b}\right ) {\mathrm e}^{\frac {b \,\operatorname {arccosh}\left (c x \right )+2 a}{b}}+\operatorname {Ei}_{1}\left (-2 \,\operatorname {arccosh}\left (c x \right )-\frac {2 a}{b}\right ) {\mathrm e}^{-\frac {-b \,\operatorname {arccosh}\left (c x \right )+2 a}{b}}\right )}{4 \left (c x -1\right ) \left (c x +1\right ) c b}\) \(165\)

[In]

int((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/4*(-c^2*x^2+1)^(1/2)*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*ln(a+b*arcc
osh(c*x))+2*ln(a+b*arccosh(c*x))*c*x+Ei(1,2*arccosh(c*x)+2*a/b)*exp((b*arccosh(c*x)+2*a)/b)+Ei(1,-2*arccosh(c*
x)-2*a/b)*exp(-(-b*arccosh(c*x)+2*a)/b))/(c*x-1)/(c*x+1)/c/b

Fricas [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{b \operatorname {arcosh}\left (c x\right ) + a} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a), x)

Sympy [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\int \frac {\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{a + b \operatorname {acosh}{\left (c x \right )}}\, dx \]

[In]

integrate((-c**2*x**2+1)**(1/2)/(a+b*acosh(c*x)),x)

[Out]

Integral(sqrt(-(c*x - 1)*(c*x + 1))/(a + b*acosh(c*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{b \operatorname {arcosh}\left (c x\right ) + a} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="maxima")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a), x)

Giac [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{b \operatorname {arcosh}\left (c x\right ) + a} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-c^2 x^2}}{a+b \text {arccosh}(c x)} \, dx=\int \frac {\sqrt {1-c^2\,x^2}}{a+b\,\mathrm {acosh}\left (c\,x\right )} \,d x \]

[In]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x)),x)

[Out]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x)), x)